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Comoving density of radio sources
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Radio luminosity functions
with machine learning and Radio Galaxy Zoo

Matthew Alger Radio luminosity functions with machine learning and Radio Galaxy Zoo



Comoving density of radio sources
as a function of radio luminosity

Radio luminosity functions
with machine learning and Radio Galaxy Zoo

[

Approximating functions
based on existing data
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Comoving density of radio sources
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(v A citizen science project for

Approximating functions matching radio emission to
based on existing data infrared galaxies
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Comoving density of radio sources
as a function of radio luminosity

Radio luminosity functions
with machine learning and Radio Galaxy Zoo

(v A citizen science project for

Approximating functions matching radio emission to
based on existing data infrared galaxies

Uce machine learning to approximate how citizen scientists crocc-identify, then

crose-identify everything and make a luminogity function with a huge cample cize
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Radio Galaxy Zoo

Citizen scientists cross-identify radio
emission with infrared host galaxies

1.4 GHz radio
(FIRST)

3.4 ym infrared

(WISE) \

L
Click on any radio contour or pair of jets

Reset All No Contours ~ Done
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Radio luminosity functions -

e Comoving density of radio sources as a
function of radio luminosity
o Units of dex' Mpc3
o Distribution of radio source luminosities in a
physically meaningful way I ——
e Fractional radio luminosity functions o AGNs

o Luminosity distribution of physically-selected I ©
subsets may be different x

log,o[@ (mag™" Mpc™)]

. 20 22 24 | 26
o Helps understand evolution and structure of

Og‘o[PwAz. (W A‘Z—)H
radio galaxies
& Radio luminosity function divided into radio
due to star formation and radio due to active
galactic nuclei.
Image: Mauch & Sadler (2007)
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Binary classification

e Find a function that separates 0
objects into two classes N 2
e Well-understood IR
> 0.25- qe .2
E?(«(I.Vd./ehf.‘ f : Rd —> R —-0.25 : .:
h(x) = 9(<) > 0 g: kY — [0, 1] RS

3[)():6-[/[()()) h . Rd — {—l— J_} -10 -05 00 0.5 1.0 15 2.0
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Learning from Radio Galaxy Zoo

e Assign hosts positive
labels
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Learning from Radio Galaxy Zoo

e Assign hosts positive
labels

e Assign everything else
negative labels
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Learning from Radio Galaxy Zoo

e Assign hosts positive
labels

e Assign everything else
negative labels

e Train classifier to identify
host and not host classes

O Binary classifier

¢
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Learning from Radio Galaxy Zoo

Matthew Alger

O Binary classifier
8

¢

e Assign hosts positive
labels

e Assign everything else
negative labels

e Train classifier to identify
host and not host classes

xid : Radio — IR
xid(r) = argmax g(i) Mr, i)

i € IR objects
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Binary classification model

Matthew Alger
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Radio Convolutional Logistic @
Image neural network regression @
Mid-IR
colours
Radio Nearby . e . Host
Binary classifier argmax




Lu m i n O S ity fu n C t i O n Radio Galaxy Zoo: radio luminosity functions of extended sources

M.J. Alger'2* et al.

Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 261 1. Australia

. RGZ-EX CO ntains 1 57 007 lf)umoL<:s'mu<1mlu-,m..4(‘1‘20-0L.»\u.muuu
cross-identified radio sources with

& 1073 o
30 743 redshifts 5 i
e Large sample allows us to build a T 1070
radio luminosity function of =]
‘m 1077 4
extended sources S oo
o  Luminosities up to 10%” W/Hz £ 109 ]
o Close match to Mauch and Sadler (2007) g 10-10 §

radio AGN luminosity function S 1023 1025 1027

Ly 4 GHz (W Hz™1)
—— RGZ -4~ Mauch & Sadler (2007)
—— RGZ-Ex Mauch & Sadler (AGN; 2007)
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Fractional luminosity function (Mid-IR)

e Divide radio luminosity function

based on mid-infrared host colours
o “Extended” star-forming sources below
1023 W/Hz (visually verified)
o Radio-loud sources
dominated by
“intermediate”
galaxies

10—4 -

10—1() -

Comoving density (dex—! Mpc~3)
e
o
&
L

10—12 —— 7

T T T
1022 1023 024 1025 1026 1027
-1
L, 4 gHz (WHz™)

W1l-w2

—I— Total —I— Starforming
: Spheroids -J- AGN
W= Intermediate

—e— RGZ-Ex —— RGZ
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Bivariate luminosity function (Mid-IR)

e Divide radio luminosity function

based on 12 ym/4.6 pm colour 45
o “Extended” star-forming sources below 4 -
1023 W/Hz (visually verified) - | . . =
o Radio-loud sources g
dominated by 0 2
“intermediate” v . =
galaxies T A 1
10 0-
00 R
sl o 4 E' - 1022 1024 1026
. ity 4

Matthew Alger

Li4 guz (W Hz™1)

T T T T T
-1 0 1 2 3 4 5 6
W2 -Wws3

—e— RGZ-Ex —— RGZ
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The RGZ-Ex catalogue

e C(Catalogue of 157 007 candidate
radio sources and their hosts

e Large but noisy

e (Contains around sixty previously
unidentified giant radio galaxies
(=1 Mpc)

Matthew Alger Radio luminosity functions with machine learning and Radio Galaxy Zoo



,_
o
A

RGZ-Ex and luminosity functions

10=5

e We developed an automated, machine learning
approach to radio-infrared cross-identification

Comoving density (dex~! Mpc—3)
-
9

10—12

e We created a huge catalogue of candidate radio
sources and their hosts
e We estimated fractional radio luminosity

2] T T ! 2 ) T
1022 1023 1024 1025 1026 1027
L4 GHz (WHz™)

=f= Total —[— Starforming
Spheroids -I- AGN
—]— Intermediate

functions of extended radio sources
e We found ~60 new giants

W2 - W3

— — = —
4 % 8 5
o® ~ (=}
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Q
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Comoving density (dex ' Mpc—3)

10—10

Ly.4 gu (W Hz™1)
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RGZ
MongoDB

components
SNR>= 10

RGZ processing

radio components (Equation 1) o
host galaxies
cross-identification €——— ) l
binary classifier training ResNet

weights

RGZ-Ex host galaxy
for each component
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RGZ processing

RGZ source
consensus
generation

RGZ consensus
source catalogue

remove duplicate

components
SNR >= 10 sources

extended Island radio peaks

components match FIRST sources with sources with
(Equation 1) components within identified host consensus >= 0.65
\ 10"

cross-identification known
host galaxies

find nearby IR candidate
galaxies hosts

unlabelled
galaxies

find other nearby IR classifier training

gal

IR colours

binary-labelled
IR galaxies

features for predict
candidate nosts, scores
l I features labels
multiply by per-component
Gausslan for each host
component probabilities

Adam (training)

ResNet
weights

maximise for each
component

binary classifier

RGZ-Ex host galaxy
for each component
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Binary classification model

e ResNet-18 (multiclass) nception-va
o Good accuracy - Inception-v3 ResNet-152
o Low complexity Jreshgize § '.R _reecion VGG-16  VGG-19
o Very fast to train and use 7 N 48
e Remove last layer and replace g Googhet
with a binary classifier :
° Add non-image features F 601 5M 35M 65M 95M 125M 155M
o  Mid-infrared colours 55 1 e~
o 3.4 pm flux " : : _ ' . s .
o Room for improvement — e.g. add 0 . - T
redshifts ITrade—lc\)lffs between network complexity and accuracy on
mageNet.

Image: Canziani et al. (2016)
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Cross-identification as binary classification

xid : Radio — IR
x1d(r) = argmax {(i; r)

1 € candidate IR hosts

where
f:RI>R
f(i) = p(host | 1)

is a binary classifier
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