
Deep Inverse Reinforcement Learning

Ma hew Alger
The Australian National University

In this report, we describe “inverse reinforcement learning”. This is the problem of
finding an unknown reward function for a Markov decision process (MDP), given an
optimal policy for that MDP. We also describe existing methods to solve this problem,
and investigate a pre-existing deep learning extension to these methods.

Introduction
There are many situations where we may want to model or reliably replicate some nat-
ural behaviour. Examples of this include road network navigation by taxis[1], the for-
aging behaviour of bees[2], or even the specifics of driving along highways[3]. These
behaviours involve trade-offs that may be arbitrarily complex: Roads may have many
differently-featured routes to get to the same location, foraging animals must make
trade-offs between various risks and resource gains, and driving on a highway balances
proximity to other cars and road features with ease of controlling the car and overall
speed. The exact trade-offs made in these scenarios are generally guessed and subse-
quentlymodified by researchers until they give behaviourmatching reality[3], but even
the results of this approach are still very much an assumption which may be incorrect
or break down in different conditions[4].

Inverse reinforcement learning (IRL) provides a systematic way of formally stating
and solving this problem. The observed behaviour is treated as if it were the solution to
a reinforcement learning problem, and the problem reduces to recovering the associated
reinforcement learning reward function.

We will first introduce our notation, summarise the general topic of reinforcement
learning, and introduce inverse reinforcement learning as first described by Russell[4].

Preliminaries
In this section, we will summarise the notation used later in this report and define the
key concepts required to discuss the inverse reinforcement learning problem.

In reinforcement learning, an agent acts in an environment. In this reportwe assume
that environments are Markov decision processes (MDPs). Agents occupy a state of
the environment and perform actions to change the state they are in. After taking an
action, they are given some representation of the state they are now in and some reward
value associated with the action and new state.

An MDP, formally, is a tuple (S,A, {Pa
ss′}, R, γ), where:

• S is a (possibly infinite) set of states; we will only consider finite S in this report.

• A is a set of actions.

1

Deep Inverse Reinforcement Learning Ma hew Alger

• {Pa
ss′} is a set of transition probabilities, where Pa

ss′ is the probability of transi-
tioning from state s ∈ S to state s′ ∈ S after taking action a ∈ A[5].

• R : S × A → R is the reward function, which describes how much reward an
agent should get by taking an actionwhen the agent is in a given state of theMDP.
Reward is some real-valued performancemeasure; long-term reward is generally
the sum of rewards accumulated over a long period of time. Wewill only consider
reward functions that are independent of action in this report, and only rewards
with absolute value bounded by Rmax.

• γ ∈ [0, 1) is called the discount factor, and describes howmuch a given reward is
worth one step into the future compared to ge ing the same reward now[5]. For
example, if γ = 0.5, then ge ing a reward of 1 now is worth as much as ge ing a
reward of 2 one step into the future.

We define for later convenience a matrix P a, where (P a)ij = Pa
sisj . Similarly, since

the reward is only a function of state, we define a vectorR, whereRi = R(si).
The behaviour of the agent in the MDP is described by a policy. A policy is a func-

tion π : S → A, where π(s) gives the action the agent would take in state s. An optimal
policy is a policy that maximises expected long-term reward for an agent following that
policy. All optimal policies are denoted π∗[5]. For a stochastic policy, wemay alsowrite
π(s, a) as the probability of taking action a in state s under the policy.

A path taken through an MDP by an agent is denoted ζ, and is an ordered list of
state and action tuples ζ = [(s1, a1), (s2, a2), . . .]. Since the MDP may be stochastic
depending on Pa

ss′ , there may be many different paths generated by the same policy.
We generalise the reward function to act on paths by defining

R(ζ) =
∑

(si,ai)∈ζ

R(si) (1)

The probability of taking a path according to {Pa
ss′} is denoted P (ζ); dependence on

{Pa
ss′} is assumed.
We represent states as either integers or feature vectors. Let ϕ : S → RD, where D

is some natural number. This is called the feature map; the feature vector representing
state s is thenϕ(s). It is not, in general, injective or surjective. D is the dimensionality of
the feature space. We define the feature counts of a path ζ as the sum of feature vectors
of the states visited along that path:

ϕζ =
∑

(si,ai)∈ζ

ϕ(si) (2)

We also define the feature expectations as the average feature counts over all paths:

ϕ̃ =
∑

all paths ζ

P (ζ)ϕζ (3)

Reinforcement learning
The problem of reinforcement learning is now simple to state: For an agent in an en-
vironment with unknown transition probabilities, find, through trial and error, the op-
timal policy[5]. In this section, we describe some background and key results of rein-
forcement learning.

2

Deep Inverse Reinforcement Learning Ma hew Alger

We first define the value function V π : S → R as

V π(s) = Eπ

[∞∑
i=0

γiR(st+i+1)

∣∣∣∣ st = s

]
(4)

where st is the current state, st+1 is the next state visited under π, and so on[5]. The
value function V π(s) is the total discounted long-term reward expected to be obtained
by an agent following the policy π and starting in state s. Informally, V π(s) describes
how “good” it is for an agent to be in the state s if the agent follows the policy π. As
with reward, we define for convenience a vector V π , where (V π)i = V π(si).

For any policy π and state s, V π(s) satisfies a recursive relationship called the Bell-
man equation for V π[5]:

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S
Pa
ss′ [R(s′) + γV π(s′)] (5)

V π uniquely solves the Bellman equation, so we can use the Bellman equation to find
V π.

The action–value function Qπ : S × A → R is similarly defined as a measure of
discounted long-term reward expected to be obtained by taking an action in a state and
then following π thereafter[5]:

Qπ(s, a) = Eπ

[∞∑
i=0

γiR(st+i+1)

∣∣∣∣ st = s, at = a

]
(6)

Qπ and V π are related by

Qπ(s, a) = E
[
R(st+1) + γV π(st+1)

∣∣∣∣ st = s, at = a

]
(7)

We can now formally restate what an optimal policy is. A policy π is optimal iff

∀s ∈ S. ∀a ∈ A \ π(s). Qπ(s, π(s)) ≥ Qπ(s, a) (8)

There are many algorithms for finding such policies. There are two main classes of
policy-finding algorithms: Model-based, and model-free. A model-based algorithm
either knows the transition probabilities of the MDP, or forms some explicit approxi-
mation of them from observed trajectories. A model-free algorithm does not.

In the experiments covered in this report, we use the value iteration algorithm. This
is amodel-based algorithm that relies on knowledge of the transition probabilities. It es-
timates the value function for each state; the policy in any given state is then whichever
action is expected to lead to the highest-valued state. The value iteration algorithm is

3

Deep Inverse Reinforcement Learning Ma hew Alger

reproduced here as algorithm 1.

Algorithm 1: Value iteration[5].
Input: Pa

ss′ , R(s),S,A, γ
foreach s ∈ S do

V (s)← 0
end
∆←∞;
while ∆ > ϵ do

∆← 0;
foreach s ∈ S do

v ← V (s);
V (s)← maxa∈A

∑
s′∈S Pa

ss′(R(s′) + γV (s′));
∆← max(∆, |v − V (s)|);

end
end
foreach s ∈ S do

π(s)← argmaxa∈A
∑

s′∈S Pa
ss′(R(s′) + γV (s′));

end
return π

An example of a model-free algorithm is SARSA, which learns an optimal policy
by repeatedly estimating Qπ and then modifying π to be more optimal[5]. We do not
discuss SARSA or other policy-finding algorithms here.

Inverse reinforcement learning
Inverse reinforcement learning (IRL) is the problem of finding the environment’s re-
ward function given observations of the behaviour of an optimally-behaving agent, i.e.,
given either an optimal policy π∗ or sample paths of an agent following π∗[4]. This is
motivated by two main ideas.

Firstly, wemaywant to replicate behaviour of some entity by usingwell-tested rein-
forcement learningmethods, but a reward function suited to this taskmay be arbitrarily
complex, abstract, or difficult to describe. An example of this is the problem of driving
a car; to quote Abbeel & Ng’s 2004 paper[3] on IRL:

Despite being able to drive competently, the authors do not believe they can
confidently specify a specific reward function for the task of “driving well”.

By finding a reward function, we can then train an agent to find a policy based on that
reward function and hence replicate the original behaviour. This kind of problem is
called apprenticeship learning. By recovering a reward function and learning a policy
from it, rather than directly learning a policy from behaviour (e.g. by function approx-
imation of π∗), we may be able to find more robust policies that can adapt to pertur-
bations of the environment[3, 6]. We may also be able to solve the related problem of
transfer learning, where the abstract goal the agent is trying to achieve is similar, but
the specifics of the environment differ; a policy learned directly from another environ-
ment’s optimal policy will probably not be successful in the new environment[7].

Secondly, wemaywant to know the reward function itself, to explain the behaviour
of an existing agent. In the example of modelling the behaviour of bees[2], there is
no real interest in recovering the behaviour of the bees, but instead in modelling their
motivations.

IRL as stated is not a problem without issues. The biggest issue is that of reward
function multiplicity: For any given policy π, there are many reward functions for

4

Deep Inverse Reinforcement Learning Ma hew Alger

which π is optimal. As an example, for the trivial reward function R(s) = const, every
policy is optimal[8]. In practice, degeneracy in reward functions is resolved with use
of heuristics to favour specific reward functions over trivial ones, but even this only
partially resolves the problem as there can still be many non-trivial reward functions
matching the observed policy.

Review of IRL Algorithms
In this section, we review existing IRL algorithms by Ng & Russell[8], and Ziebart et
al.[1], and summarise their derivations and methods.

Linear programming formulation
Ng & Russell[8] introduced the first algorithms to solve the IRL problem. These algo-
rithms work differently for small and large state spaces; we begin by looking at the
small state space approach. This approach explicitly requires both the policy π∗ and
the transition probabilities {Pa

ss′}.
By writing the Bellman equation (equation 5) in matrix form, we can explicitly solve

for V π . Writing the action chosen by π∗ in any given state as a∗, we find

V π∗
= (I − γP a∗

)−1R (9)

We can also rewrite the condition for a policy to be optimal (equation 8) in terms of the
value function.

∀a ∈ A \ a∗. P a∗
V π∗

≥ P aV π∗
(10)

Substituting equation 9, we find

∀a ∈ (A \ a∗). (P a∗
− P a)(I − γP a∗

)−1R ≥ 0 (11)

This is a key result of the paper: The reward function R is constrained by the actions
chosen by π∗. This constraint, then, can in principle be solved for R. The degeneracy
problem is immediately apparent, since R = const is a solution no ma er what MDP
we have. A further constraint is thus introduced to reduce the number of solutions. We
choose the solution to equation 11 that maximises

∑
s∈S

(
Qπ∗

(s, a∗)− max
a∈(A\a∗)

Qπ∗
(s, a)

)
(12)

The intuitive meaning of equation 12 is that deviating from the optimal policy should
reduce the total reward as much as possible. We also include an L1 regularisation term
to favour “simpler” solutions over “complicated” ones; with L1 regularisation we ex-
pect sparse solutions forR. We can write this as a linear programming problem, which
can then be solved with well-known linear programming methods:

maximise
|S|∑
i=1

min
a∈(A\a∗)

((P a∗
)i − (P a)i)(I − γP a∗

)−1 ·R− λ||R||1 (13)

s.t. ∀i ∈ 1, . . . , |S|. ∀a ∈ (A \ a∗).−((P a∗
)i − (P a)i)(I − γP a∗

)−1 ·R ≤ 0 (14)
and ∀i ∈ 1, . . . , |S|. |Ri| ≤ Rmax (15)

5

Deep Inverse Reinforcement Learning Ma hew Alger

This can be wri en as a set of matrix equations. Taking M and u as dummy vectors,
the problem in block matrix form becomes:

maximise

 0
1
−λ1

 ·
R
M
u

 (16)

s.t.

−(P a∗ − P a)(I − γP a∗

)−1 I 0

−(P a∗ − P a)(I − γP a∗
)−1 0 0

−I 0 −I
I 0 −I

 ·
R
M
u

 ≤ 0 (17)

In larger state spaces, this formulation becomes intractable. This can be resolved
this by approximating the reward function as a linear combination of feature vectors of
the states:

R(s) = α · ϕ(s) (18)

The value function for the optimal policy with this reward function is linear in α:

V π∗
(s) =

∑
i

αiV
π∗

i (s) (19)

where V π
i is the value function for the policy π when R(s) = αiϕi(s). We thus have a

generalisation of equation 11 for this approximation:

∀s ∈ S.∀a ∈ (A \ a∗). E
s′∼Pa∗

ss′

[
V π∗

(s′)
]
≥ E

s′∼Pa
ss′

[
V π∗

(s′)
]

(20)

where Es′∼Pa
ss′

represents an expectation value over states s′ weighted by the proba-
bility of transitioning to s′. Since V π∗ is linear in α, we can interpret this as a set of
constraints on α. In practice, since we are dealing with large state spaces, we have a
very large number of these constraints. To rectify this, we only consider constraints on
states from a sample S0 ⊂ S .

This results in another linear programming formulation for large state spaces:

maximise
∑
s∈S

min
a∈(A\a∗)

p

(
E

s′∼Pa∗
ss′

[
V π∗

(s′)
]
− E

s′∼Pa
ss′

[
V π∗

(s′)
])

(21)

s.t. ∀i ∈ 1, . . . , D. |αi| ≤ 1 (22)

where

p(x) =

{
x, x ≥ 0

mx, x < 0
(23)

Since the reward is now linearly approximated, it may no longer be possible to find
a non-trivial reward function that makes the observed policy optimal. To get around
this, we relax the optimality condition by introducing the function p(x). p(x) represents
a penalty for suboptimal actions leading to higher value states than optimal actions
would under our recovered reward function. This penalty lets us change our strict
optimality constraint into a relaxed constraint, where violating optimality increases the
value we are trying to minimise by some dynamic amountmx. m is how strongly this
penalty is enforced. Ng&Russell found empirically thatm = 2was an effective penalty
coefficient[8].

6

Deep Inverse Reinforcement Learning Ma hew Alger

The nonlinear functions p andmin can be eliminated by adding additional variables.
We can once again write this as a set of matrix equations. Taking z, y, and x as dummy
vectors, the block matrix form is

maximise

1
0
0
0

T

z
y
x
α

 (24)

s.t.
[
0 Ij −Ij −vT

ij

]
z
y
x
α

 = 0 (25)

and

0 0 0 I
0 0 0 −I
0 −I 0 0
0 0 −I 0

1IT
l −δilI 2δilI 0

z
y
x
α

 ≤

1
1
0
0
0

 (26)

where
(vij)k = E

s′∼Pa∗
ss′

[
V π∗

k (s′)
]
− E

s′∼Pa
ss′

[
V π∗

k (s′)
]

(27)

The final linear programming formulation in Ng & Russell’s paper describes IRL
from sampled paths, with no explicit π∗ or {Pa

ss′}, though it does require the ability
to run arbitrary policies through the MDP. This is effectively an approximation to the
previous formulation of the problem, with slight changes to the eventual linear pro-
gramming formulation, so we do not go into detail on this here.

Maximum entropy formulation
Ziebart et al.[1] build on Abbeel & Ng’s[3] approach to removing multiplicity in the
possible reward functions. They introduced amethod of matching feature expectations
between observed paths and optimal paths for recovered reward functions. Intuitively,
if we generate a policy which is optimal for our recovered reward function, we would
expect that on average it generates the same paths as the optimal policy for the true
reward function. This approach thus recovers reward functions that can be learned
from using standard reinforcement learning methods to recover policies similar to the
optimal policy. The observed feature expectations from our N observed trajectories is
a simple average over feature counts.

ϕ̃ ≈ ϕ̃obs =
1

N

N∑
i=1

ϕζi (28)

Ziebart et al. extend this by using the principle of maximum entropy. First, they
restate the problem probabilistically. Consider a distribution over all possible paths
through the MDP. Due to the stochastic nature of the environment, there may be many
paths which match feature expectations, and these paths may be constrained in ways
that are not implied by the feature expectations[1]. To fix this problem, we use themax-
imum entropy distribution over paths, which has the least additional constraints other
than what we know from our feature expectation matching. The maximum entropy
distribution is described in more detail by Jaynes[9]. The result of this is that paths
yielding higher total reward should be exponentially more likely to be chosen, i.e.:

P (ζ) =
1

Z
exp(R(ζ)) (29)

7

Deep Inverse Reinforcement Learning Ma hew Alger

where Z is called the partition function in analogy with statistical physics and is a
normalisation constant obtained by summing exp(R(ζ)) over all paths.

One key benefit of this probabilistic approach is that we implicitly handle the un-
certainty and noise in our observed paths through the MDP, potentially leading to ob-
taining clearer or more robust reward functions.

For a non-deterministic MDP, the maximum entropy distribution is intractable, but
under the assumptions that the partition function is constant and that the stochasticity
in the MDP has li le effect on long-term behaviour of the policy, there is a tractable
approximation:

P (ζ | α) ≈ exp(α · ϕζ)

Z(α)

∏
(st,at),(st+1,at+1)∈ζ

Pat
stst+1

(30)

This gives a stochastic policy, where we choose an action with a probability propor-
tional to the sum of all probabilities of taking paths that begin with that action, i.e.,

P (a | α) ∝
∑

ζ s.t. a∈ζ1

P (ζ | α) (31)

To find α, we want to maximise the log-likelihood of observing the observed paths
under this distribution. This is an optimisation problem, with the optimal α given by

α∗ = argmax
α

L(α) = argmax
α

N∑
i=1

logP (ζi | α) (32)

Ziebart et al. assume that the reward function is linear in the states (as in the linear
programming approach, equation 18) and hence find the gradient of L(α) to be

∂L

∂α
= ϕ̃obs −

N∑
i=1

P (ζi | α)ϕζi = ϕ̃obs −
∑
s∈S

D(s)ϕ(s) (33)

whereD(s) is called the expected state visitation frequency of state s and represents the
probability of being in a given state. D(s) can be efficiently computed using a dynamic
programming algorithm which takes transition probabilities and a reward function,
and returns D(s). The transition probabilities are ideally given, but can be approxi-
mated by observed trajectories. This algorithm has been reproduced here as algorithm
2. α can then be found by standard gradient descent methods, where D(s) is recalcu-
lated using algorithm 2 after each gradient descent step based on the new value of α.

8

Deep Inverse Reinforcement Learning Ma hew Alger

Algorithm 2: Dynamic programming algorithm for finding D[1].
Input: {Pa

ss′}, R(s),S,A
Output: D(s)
Zsterminal ← 1;
loop N times

foreach s ∈ S do
foreach a ∈ A do

Zsa ←
∑

s′∈S Pa
ss′Zs′ expR(s);

end
end
foreach s ∈ S do∑

a∈A Zsa + 1s=sterminal ;
end

endloop
foreach s ∈ S do

foreach a ∈ A do
P (a | s)← Zsa/Zs;

end
D0(s)← P (s = sinitial);

end
foreach t ∈ 1, . . . , N do

foreach s ∈ S do
Dt(s)←

∑
s′∈S

∑
a∈A Dt−1(s

′)Pa
s′sP (a | s′);

end
end
foreach s ∈ S do

D(s)←
∑N

t=0 Dt(s);
end
return D(s)

Deep maximum entropy formulation
The maximum entropy formulation can be simply extended to use deep learning. This
extension has also been derived by Wulfmeier et al.[10]

In the maximum entropy formulation, we assumed that the reward function is a
linear combination of feature vectors, as in equation 18.

R(s) = α · ϕ(s)

This has a very obvious limitation: It might not be possible to accurately approximate
the reward function as a linear combination of these feature vectors in the given basis
ϕ. To remedy this, we can approximate the basis functions as non-linearly transformed
linear combinations:

R(s) = α ·φ(s) (34)
φ(s) = σ(W · ϕ(s)) (35)

Here, σ(x) is the sigmoid (logistic) function1 (equation 36), applied elementwise to the
1We can use any non-linear function instead of sigmoid. In this context the function we use is called the

9

Deep Inverse Reinforcement Learning Ma hew Alger

vector x.
σ(x) =

1

1 + exp(−x)
(36)

This concept can be extended to arbitrary depth.

R(s) = α ·φn(s) (37)

φn(s) = σ(Wn ·φn−1(s)) (38)
...

φ1(s) = σ(W1 · ϕ(s)) (39)

This structure is called a neural network, and when n > 1we call it a deep neural net-
work[12]. By choosing suitable values for the parametersW1, . . . ,Wn, we can approx-
imate any continuous feature map[13, 11] and hence, in principle, any reward function.

We can still find theα that minimises loss Lwith gradient descent, by using a varia-
tion of equation 33. This variation is shown in equation 40; φ̃obs,n is the observed feature
expectations evaluated with φn as the feature map.

∂αL = φ̃obs,n −
∑
s∈S

D(s)φn(s) (40)

DefineDobs(s) as the observed state visitation frequency of state s;Dobs(s) is the num-
ber of times the state s was visited in the observed trajectories, divided by the total
number of states visited. We can then rewrite the observed feature expectations as∑

s∈S Dobs(s)φn(s) and hence we can rewrite ∂αL as

∂αL =
∑
s∈S

(Dobs(s)−D(s))φn(s) (41)

In this form, the connection between the derivative with respect to α and the origi-
nal equation becomes clear. We can now easily find gradients of L with respect to
W1, . . . ,Wn. Generalising the Ziebart et al. gradient for α (equation 41), we find the
gradient with respect toWi to be

∂WiL =
∑
s∈S

∂L

∂R(s)

∂R(s)

∂Wi
(42)

=
∑
s∈S

(Dobs(s)−D(s))∂WiR(s) (43)

The gradients ∂WiR(s) are standard neural network derivatives, so all gradients can be
calculated using the backpropagation algorithm[14]. From the gradients, we can find
good values for W1, . . . ,Wn and α using standard gradient descent methods, where
D(s) is recalculated using algorithm 2 after each gradient descent step. The reward
function input to algorithm 2 is given by equations 37 – 39 using the new values of
W1, . . . ,Wn and α.

This approach has recently been tested byWulfmeier et al.[10] and they obtain good
results. We a empt here to replicate these results on an MDP with reward non-linear
in the state vectors, using the above equations.

activation function in analogy with biological neurons. We choose sigmoid as it is differentiable and its
derivative can be wri en in terms of itself. These properties make the process of finding optimal parame-
ters W and α more efficient. An additional constraint on the activation function is that it should be non-
polynomial; polynomial activation functions lead to equations that cannot approximate arbitrary continuous
functions[11].

10

Deep Inverse Reinforcement Learning Ma hew Alger

Experiments and Results
We loosely followed the experimental method of Wulfmeier et al.[10] and Levine et
al.[7] and compared the maximum entropy IRL algorithm (MaxEnt) to the deep max-
imum entropy IRL algorithm (DeepMaxEnt) on the objectworld MDP, and compared
our results to the results presented in the Wulfmeier et al. paper. We set γ = 0.9 and
used a learning rate of ξ = 0.01. The deep maximum entropy network consisted of two
hidden layers of dimension 3; Wulfmeier et al. found this to be a good configuration
of the network[10]. We also included bias vectors on the inner layers. All layers of
the network were initialised with random normal values; bias vectors were initialised
as zero. The equations describing the maximum entropy reward and deep maximum
entropy reward are equation 44 and equation 45 respectively, where ϕcts is the matrix
with column i equal to ϕcts(si), bi are bias row vectors, and Wi are weight matrices.
Gradient descent was performed using AdaGrad[15]. The expected state visitation fre-
quency D(s) was recalculated based on the current reward function at each iteration
step using algorithm 2, and this was then used to calculate the gradient as described
in equation 43. The reward was z-scored before each calculation ofD(s) to prevent the
exponentiation of the reward function in algorithm 2 from overflowing.

RME = αTϕcts (44)
RDME = αTσ(b2 +W2σ(b1 +W1ϕcts)) (45)

Both the maximum entropy tests and the deep maximum entropy tests were per-
formed with the same code framework. This is possible since the maximum entropy
algorithm is a special case of the deep maximum entropy framework with no hidden
layers. By using the same code for both algorithms, we hope to eliminate systematic er-
rors in the implementationwhichwould bias results toward or against either algorithm.
The implementation is available on GitHub 2.

We evaluated the performance of each algorithm by using the expected value differ-
ence (EVD) score[7]. This is computed by finding the optimal policy under the reward
function recovered by each algorithm and then finding the expected total discounted re-
ward for this policy under the original reward function. The expected value difference
is then given by the difference between this value and the expected total discounted
reward for the optimal policy, averaged over initial states.

Evaluation MDP
Experiments were run on the objectworldMDP[7], which has states that are cells in an
N ×N grid. An agent can take five actions in each state: up, down, left, right, or stay.
Each action corresponds to movement in the given direction (or no movement at all for
stay), but has a 30% chance of moving in a random direction instead. If the agent tries
to move off the grid, it remains in the same state. Agents start in random states.

The grid contains somenumber of “objects”, distributed at random through the grid.
Each object has a position on the grid, an inner colour, and an outer colour; there are C
colours. The reward of a state is 1 if the state is both within 3 cells of an outer red object
and within 2 cells of an outer green object, −1 if the state is within 3 cells of an outer
red object, and 0 otherwise. The inner colours and any colours other than red or green
are unrelated to the reward and serve as distractors.

2https://github.com/MatthewJA/Inverse-Reinforcement-Learning

11

https://github.com/MatthewJA/Inverse-Reinforcement-Learning

Deep Inverse Reinforcement Learning Ma hew Alger

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Figure 1: Example 10×10 objectworld. Cells coloured grey have reward 0, cells coloured
white have reward 1, and cells coloured black have reward−1. Objects are represented
by circles with their inner and outer colours represented as the colour of the inner circle
and the colour of the outer circle respectively.

Two different feature maps can be used represent the states: a continuous map, and
a discrete map. The continous map, ϕcts, gives 2C-dimensional real-valued feature vec-
tors. The elements of the feature vectors are distances to objects: The first element is
the distance to the nearest inner red object, the second element is the distance to the
nearest outer red object, the third element is the distance to the nearest inner green
object, and so on through all colours. The discrete map, ϕdsc, gives 2CN -dimensional
binary-valued feature vectors. For each continuous feature element, there are N dis-
crete elements, with the dth element being 1 if the corresponding continuous feature
element is less than d. We only used the continuous feature map in our experiments.

Results
We tested themaximum entropy and deepmaximum entropy algorithms on 32×32 ob-
jectworlds with different numbers of sampled paths. 50 objects were placed randomly
on the grid. Two colours were used. Each path sampled as input to the IRL algorithms
was of length 8. Each trial was repeated five times. A similar test was run on 16 × 16
objectworlds. Since these MDPs are smaller, the algorithms tested were much faster, so
more trials could be run. All parameters were the same as for the 32×32 tests, but each
trial was repeated 40 times. The results for both tests are plo ed in figure 2.

Plots of the 32 × 32, 16 path trials are shown in figure 3 for illustrative purposes.
Additionally, the recovered reward and value functions for two specific examples of
the 16 path trials are shown in figure 4; these were the trials where deep maximum
entropy achieved the best and worst results. Figures 4a – 4f are from the trial where
deep maximum entropy maximally outperformed maximum entropy (EVD 0.74 and
EVD 1.95 respectively), and 4g – 4l are from the only trial where maximum entropy
outperformed deep maximum entropy (EVD 1.96 and EVD 2.62 respectively).

12

Deep Inverse Reinforcement Learning Ma hew Alger

4 8 16 32
0

2

4

Paths

Ex
pe
ct
ed

va
lu
e
di
ffe
re
nc
e

MaxEnt
DeepMaxEnt

(a) 32× 32 objectworld

4 8 16 32
0

2

4

Paths

Ex
pe
ct
ed

va
lu
e
di
ffe
re
nc
e

MaxEnt
DeepMaxEnt

(b) 16× 16 objectworld

Figure 2: Mean expected value difference for different numbers of sampled paths on
different sized objectworlds. Error bars represent standard deviations.

13

Deep Inverse Reinforcement Learning Ma hew Alger

(a) Groundtruth reward. (b) MaxEnt reward. (c) DeepMaxEnt reward.

(d) Groundtruth reward. (e) MaxEnt reward. (f) DeepMaxEnt reward.

(g) Groundtruth reward. (h) MaxEnt reward. (i) DeepMaxEnt reward.

(j) Groundtruth reward. (k) MaxEnt reward. (l) DeepMaxEnt reward.

(m) Groundtruth reward. (n) MaxEnt reward. (o) DeepMaxEnt reward.

Figure 3: Groundtruth and recovered reward functions from the 32× 32, 16 path trials.
Each row represents one trial. Red is the most positive reward, and blue is the most
negative reward, with other hues representing intermediate rewards.

14

Deep Inverse Reinforcement Learning Ma hew Alger

Best:

(a) Groundtruth reward. (b) MaxEnt reward. (c) DeepMaxEnt reward.

(d) Groundtruth value. (e) MaxEnt value. (f) DeepMaxEnt value.

Worst:

(g) Groundtruth reward. (h) MaxEnt reward. (i) DeepMaxEnt reward.

(j) Groundtruth value. (k) MaxEnt value. (l) DeepMaxEnt value.

Figure 4: Groundtruth and recovered reward and value functions from the best- and
worst-performing 32× 32, 16 path trials. Each row represents one trial. Red is the most
positive reward, and blue is the most negative reward, with other hues representing
intermediate rewards; a similar scale applies for the value function.

15

Deep Inverse Reinforcement Learning Ma hew Alger

Discussion
The most striking property of the reward functions recovered by the deep maximum
entropy algorithm (figure 3) is that they are much sharper than those recovered by
the maximum entropy algorithm. Having sharp peaks in recovered reward functions
makes sense within the context of maximum entropy: The simplest reward function
that gives policies matching feature expectations are point sources of reward located in
states that the optimal policy aims to occupy. In the objectworld case, the most occu-
pied states are those that are maximally far away from low reward areas, i.e., the centre
of positive reward areas. This is because of the 30% random action chance — being
moved at random from the centre of these areas will usually put the agent in an area
with the same positive reward, whereas beingmoved away from the edge of these areas
has a higher chance of moving the agent to a region of lower reward. Having peaks in
the reward function at the centre of these regions will reproduce policies that aim to
get to and stay in the centres, and so the recovered reward functions should reproduce
policies similar to the true optimal policies.

Indeed, both linear and deep approaches have spikes, but the maximum entropy
algorithm “spreads out” the reward over larger regions. This is likely due to the fact
it is a linear approximation, so the reward is constrained to change smoothly between
regions, whereas in the deep maximum entropy approach, non-linearity allows the re-
ward function to drop off steeply.

Another interesting difference between the reward functions recovered by maxi-
mum entropy and those recovered by deep maximum entropy is that while the maxi-
mum entropy reward functions vary fairly evenly over the range of possible rewards,
the deep maximum entropy reward functions are mostly flat with sharp negative and
positive peaks. This, again, may be a result of the heuristic employed of matching fea-
ture expectations, which aims only to recover policies similar to the optimal policy, but
that deepmaximum entropy returns reward functions that are the same in areas of zero
and negative true reward is unexpected.

From the expected value differences (figure 2), we can see that the deep maximum
entropy approach performs somewhat be er than themaximum entropy approach. We
would expect that the deepmaximum entropy approachwould at minimum be equally
good, since it reduces to the maximum entropy approach, and this is mostly confirmed
by the consistent be er performance of deep maximum entropy. In some trials, deep
maximum entropy did perform worse, though not by a very large amount. We can ex-
amine figure 4 to see a specific case where deep maximum entropy performs well, and
a specific case where it performs poorly. When deep maximum entropy did well, it
had very sharp peaks in its recovered reward function. As a result, the value function
of the recovered optimal policy on the true reward looks very similar to the true opti-
mal policy’s value function. Conversely, maximum entropy performs poorly here, as
it links areas of high reward with areas of medium reward, even though there are neg-
ative reward regions between the high reward areas. When deep maximum entropy
does poorly, it seems to have overestimated how large the high reward regions are —
the reward here is much more spread out than in other trials. This objectworld seems
fairly similar to other trialled objectworlds, so the poor performance of deep maximum
entropy here may be due to the specific trajectories that were observed for this trial
rather than properties of the objectworld. We note that maximum entropy did not do
any poorer than average for this trial, so it is possible that deep maximum entropy is
more sensitive to observed trajectories and this may have caused the poor performance
here.

Comparing our expected value difference results to those obtained byWulfmeier et
al.[10], we see far less improvement with deep maximum entropy compared to maxi-

16

Deep Inverse Reinforcement Learning Ma hew Alger

mum entropy. While our deep maximum entropy did perform be er than maximum
entropy, Wulfmeier et al. report that the expected value difference for deep maximum
entropy is on the order of five or more times lower than that of maximum entropy.
However, we also note that our maximum entropy performed far be er than the re-
sults presented in Wulfmeier et al. — we considered that this may be due to our use
of AdaGrad in our maximum entropy implementation, but removing AdaGrad did not
noticably worsen the performance of the maximum entropy algorithm.

For be er results in future experiments, we could run more trials. This was not
possible here, since trials were quite slow and we had limited computational power.
However, from comparing figure 2a (which had 5 trials per point) to figure 2b (which
had 40 trials per point), it seems that increasing the number of trials does not affect the
standard deviation much. This effect seems to come from occasional failure of both
maximum entropy and deep maximum entropy to recover a good reward function.
While we are not sure why this occurs, we note that our standard deviations are on
the same order as those presented in other results[10, 7]. One hypothesis is that the
random initialisation of the reward function occurs in a local minimum that gradient
descent cannot escape from; random restarts (such as those used by Wulfmeier et al.)
may solve this problem.

Conclusion
In this report, we have described the linear programming inverse reinforcement learn-
ing algorithm[8] and themaximumentropy inverse reinforcement learning algorithm[1].
Wehave also derived the deep inverse reinforcement learning approach taken byWulfmeier
et al.[10], and tested this approach on the objectworld MDP.

We found that the deepmaximum entropy approach achieved lower expected value
differences than the maximum entropy approach, and is thus be er at recovering re-
ward functions.

Future work could involve trialling random restarts in the gradient descent, though
this raises the question of how to combine the multiple recovered reward functions.
Experimentation on the size and structure of the neural network used would also be
useful, since this is not covered by either this report orWulfmeier et al.[10]; it is possible
that deeper or higher dimension networks may increase the effectiveness of the deep
maximum entropy approach.

Finally, it would be beneficial to find out why maximum entropy and deep maxi-
mum entropy sometimes recover very poor reward functions — this is the reason the
standard deviation of our results was so high, and is the most obvious limitation of the
two maximum entropy approaches.

References
[1] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse

reinforcement learning. In AAAI, pages 1433–1438, 2008.

[2] P. Montague, P. Dayan, C. Person, T. J. Sejnowski, et al. Bee foraging in uncertain
environments using predictive hebbian learning. Nature, 377(6551):725–728, 1995.

[3] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the twenty-first international conference on machine learning,
page 1. ACM, 2004.

17

Deep Inverse Reinforcement Learning Ma hew Alger

[4] S. Russell. Learning agents for uncertain environments. InProceedings of the eleventh
annual conference on computational learning theory, pages 101–103. ACM, 1998.

[5] R. S. Su on and A. G. Barto. Reinforcement learning: An introduction, 1998.

[6] Bilal Piot, Ma hieu Geist, and Olivier Pietquin. Learning from demonstrations: Is
it worth estimating a reward function? In H. Blockeel, K. Kersting, S. Nijssen, and
F. Železný, editors,Machine Learning and Knowledge Discovery in Databases, volume
8188 of Lecture Notes in Computer Science, pages 17–32. Springer Berlin Heidelberg,
2013.

[7] S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning
with gaussian processes. InAdvances inNeural Information Processing Systems, pages
19–27, 2011.

[8] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In ICML,
pages 663–670, 2000.

[9] E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620–630,
May 1957.

[10] M. Wulfmeier, P. Ondruska, and I. Posner. Deep inverse reinforcement learning.
arXiv preprint arXiv:1507.04888, 2015.

[11] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural
networks, 6(6):861–867, 1993.

[12] Y. Bengio. Learning deep architectures for AI. Foundations and trends® in Machine
Learning, 2(1):1–127, 2009.

[13] B. C. Csáji. Approximation with artificial neural networks. Faculty of Sciences, Etvs
Lornd University, Hungary, 24, 2001.

[14] C. M. Bishop. Pa ern recognition and machine learning. springer, 2006.

[15] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research,
12:2121–2159, 2011.

18

Deep Inverse Reinforcement Learning Ma hew Alger

Appendix — Description of code produced
This appendix describes code implemented as part of this project. All algorithms de-
scribed in this report were implemented in Python 3.4.0 with the NumPy, CVXOPT,
and Theano libraries. The algorithms implemented were:

• Linear programming inverse reinforcement learning (Ng & Russell, 2000)

• Large state space linear programming inverse reinforcement learning (Ng & Rus-
sell, 2000)

• Maximum entropy inverse reinforcement learning (Ziebart et al., 2008)

• Deep maximum entropy inverse reinforcement learning (Wulfmeier et al., 2015)

• Value iteration (Su on & Barto, 1998)

Two MDPs were also implemented:

• Gridworld (Su on & Barto, 1998)

• Objectworld (Levine et al., 2011)

All of the above code is available on GitHub at https://github.com/MatthewJA/
Inverse-Reinforcement-Learning.

19

https://github.com/MatthewJA/Inverse-Reinforcement-Learning
https://github.com/MatthewJA/Inverse-Reinforcement-Learning

