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Radio luminosity functions
● Comoving density of radio sources as a 

function of radio luminosity
○ Units of dex-1 Mpc-3 or mag-1 Mpc-3

○ Comoving density accounts for universe size 
and shape over cosmic time

○ Distribution of radio source luminosities in a 
physically meaningful way

● Fractional radio luminosity functions
○ Luminosity function of a subset of sources
○ Luminosity distribution of physically-selected 

subsets may be different
○ Helps understand evolution and structure of 

radio galaxies

Radio luminosity function divided into radio 
due to star formation and radio due to active 
galactic nuclei.
Image: Mauch & Sadler (2007)
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Radio Galaxy Zoo

+ =FIRST (radio)

WISE (infrared)

Radio Galaxy Zoo

Radio Galaxy Zoo
cross-identification

catalogue

3



Matthew Alger Radio luminosity functions with Radio Galaxy Zoo and machine learning

Cross-identification as binary classification
● Cross-identification

○ Match radio emission to infrared host galaxies
○ Output of Radio Galaxy Zoo

● Can be cast as binary classification
○ Binary classification is well-understood
○ Lots of off-the-shelf classification models
○ Easy to train

● Problems:
○ Converting cross-identification catalogues to 

binary labels loses information
○ Unclear how uncertainties in this formulation are 

related to dataset or physical uncertainties

f : ℝd → ℝ

xid : Radio → IR
xid(r) = argmax f(i; r)

               i ∈ IR objects
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Learning from Radio Galaxy Zoo
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Host

● Assign hosts positive 
labels
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Learning from Radio Galaxy Zoo
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Learning from Radio Galaxy Zoo
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Learning from Radio Galaxy Zoo
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xid(r) = argmax g(i) N(r, i)
        i ∈ IR objects
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Binary classification model
● ResNet-18 (multiclass)

○ Good accuracy
○ Low complexity
○ Very fast to train and use

● Remove last layer and replace 
with a binary classifier

● Add non-image features
○ Mid-infrared colours
○ 3.4 μm flux
○ Room for improvement — e.g. add 

redshifts

● Accurate for ~96% of sources
Trade-offs between network complexity and accuracy on 
ImageNet.
Image: Canziani et al. (2016)
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Binary classification model
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Luminosity function of extended sources
● RGZ-Ex contains 214 214 

cross-identified radio components 
with 26 268 redshifts

○ >4x more components than RGZ
○ >2x more components with

redshifts than RGZ

● Large sample allows us to build a 
radio luminosity function of 
extended sources

○ Luminosities 1021–1027 W/Hz
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Fractional luminosity function (Mid-IR)
● Divide radio luminosity function 

based on mid-infrared host colours
○ “Extended” star-forming sources below 

1023 W/Hz
○ Radio-loud sources

dominated by
“intermediate”
galaxies
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Fractional luminosity function (Mid-IR)
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● We matched 214 214 radio components to 
157 007 host galaxies

● If two components have the same host they 
are part of the same source

○ Many false positives

● RGZ-Ex candidate source catalogue
○ 157 007 candidate extended sources
○ All data required to reproduce our results
○ At least 10 new giants

Source finding with cross-identification
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Two giant radio galaxies identified in our 
catalogue, each 1.1 Mpc across.
Images: FIRST
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Looking forward: EMU
● Very different results to previous 

work on EMU-ATLAS
○ Much lower source density on sky
○ Higher angular resolution — more 

extended sources
○ More training and prediction data
○ Alger+18, doi:10.1093/mnras/sty1308

● Generalisation to EMU will be 
non-trivial

● Radio Galaxy Zoo for EMU?
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ATLAS observations of CDFS.
Image: ATLAS DR3, Franzen+2015

https://doi.org/10.1093/mnras/sty1308

