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http://www.mso.anu.edu.au/~alger/sparcs-ix

Radio luminosity functions

e Comoving density of radio sources as a

function of radio luminosity

o Units of dex' Mpc3 or mag”' Mpc3

o Comoving density accounts for universe size
and shape over cosmic time

o Distribution of radio source luminosities in a
physically meaningful way

e Fractional radio luminosity functions

o Luminosity function of a subset of sources

o Luminosity distribution of physically-selected
subsets may be different

o Helps understand evolution and structure of
radio galaxies
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Radio luminosity function divided into radio
due to star formation and radio due to active
galactic nuclei.

Image: Mauch & Sadler (2007)
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Radio Galaxy Zoo

FIRST Survey Northern Sky Coverage, 2014 December 17
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S— cross-identification
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Cross-identification as binary classification

e Cross-identification
o Match radio emission to infrared host galaxies
o Output of Radio Galaxy Zoo
e (Can be cast as binary classification . —>

o  Binary classification is well-understood
o Lots of off-the-shelf classification models

o Easyto train xid : Radio — IR
e Problems: xid(r) = argmax 1(i; r)
o Converting cross-identification catalogues to i € IR objects

binary labels loses information
o Unclear how uncertainties in this formulation are
related to dataset or physical uncertainties
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Learning from Radio Galaxy Zoo

e Assign hosts positive
labels
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Learning from Radio Galaxy Zoo

e Assign hosts positive
labels

e Assign everything else
negative labels
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Learning from Radio Galaxy Zoo

e Assign hosts positive
labels

e Assign everything else
negative labels

e Train classifier to identify
host and not host classes

O Binary classifier

¢
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Learning from Radio Galaxy Zoo
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O Binary classifier
8

¢

e Assign hosts positive
labels

e Assign everything else
negative labels

e Train classifier to identify
host and not host classes

xid : Radio — IR
xid(r) = argmax g(i) Mr, i)

i € IR objects
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Binary classification model
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ResNet-18 (multiclass)
o Good accuracy
o Low complexity
o Very fast to train and use

Remove last layer and replace
with a binary classifier

Add non-image features
o Mid-infrared colours

o 3.4 pm flux
o Room for improvement — e.g. add
redshifts

Accurate for ~96% of sources
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Binary classification model
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Luminosity function of extended sources
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RGZ-Ex contains 214 214
cross-identified radio components
with 26 268 redshifts

o >4x more components than RGZ
o >2x more components with
redshifts than RGZ

Large sample allows us to build a
radio luminosity function of

extended sources
o Luminosities 102'-10%” W/Hz

Comoving density (dex~! Mpc~3)
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Fractional luminosity function (Mid-IR)
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e Divide radio luminosity function

based on mid-infrared host colours
o “Extended” star-forming sources below
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Fractional luminosity function (Mid-IR)
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Source finding with cross-identification

e We matched 214 214 radio components to
157 007 host galaxies

e |f two components have the same host they
are part of the same source
o Many false positives
e RGZ-Ex candidate source catalogue

o 157 007 candidate extended sources . . o
Two giant radio galaxies identified in our

o All data required to reproduce our results catalogue, each 1.1 Mpc across.
. ] I FIRST
o Atleast 10 new giants nases
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Looking forward: EMU

e Very different results to previous
work on EMU-ATLAS

o Much lower source density on sky
o Higher angular resolution — more

extended sources
o More training and prediction data
o Alger+18, doi:10.1093/mnras/sty1308

e Generalisation to EMU will be
non-trivial

e Radio Galaxy Zoo for EMU? ATLAS observations of CDFS.
Image: ATLAS DR3, Franzen+2015
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