Radio luminosity functions with Radio Galaxy Zoo and machine learning

Matthew Alger (ANU/Data61)

O. Ivy Wong (ICRAR/UWA) Cheng Soon Ong (Data61/ANU) Naomi McClure-Griffiths (ANU)

Slides: http://www.mso.anu.edu.au/~alger/sparcs-ix

Australian National University

Radio luminosity functions

- Comoving density of radio sources as a function of radio luminosity
 - Units of dex⁻¹ Mpc⁻³ or mag⁻¹ Mpc⁻³
 - Comoving density accounts for universe size and shape over cosmic time
 - Distribution of radio source luminosities in a *physically meaningful* way
- Fractional radio luminosity functions
 - Luminosity function of a subset of sources
 - Luminosity distribution of physically-selected subsets may be different
 - Helps understand evolution and structure of radio galaxies

Radio luminosity function divided into radio due to star formation and radio due to active galactic nuclei. *Image: Mauch & Sadler (2007)*

Radio Galaxy Zoo

FIRST Survey Northern Sky Coverage, 2014 December 17

FIRST (radio)

WISE (infrared)

Radio Galaxy Zoo

Zooniverse ID (3)	RA (4)	Declination (5)	N _{votes} (6)	$\frac{N_{\text{total}}}{(7)}$	CL (8)
ARG000255v	251.679244	23.382107	41	42	0.98
ARG000255x	163.799660	23.384972	58	58	1.00
ARG000255y	138,960429	23.381641	43	43	1.00
ARG000255z	126.215156	23.381729	35	35	1.00
ARG0002560	149.273620	23.381661	40	40	1.00
A P C0002561	167 047509	22 291620	24	25	0.07

Radio Galaxy Zoo cross-identification catalogue

3

Cross-identification as binary classification

• Cross-identification

- Match radio emission to infrared host galaxies
- Output of Radio Galaxy Zoo
- Can be cast as binary classification
 - Binary classification is well-understood
 - Lots of off-the-shelf classification models
 - Easy to train
- Problems:
 - Converting cross-identification catalogues to binary labels loses information
 - Unclear how uncertainties in this formulation are related to dataset or physical uncertainties

 $\begin{array}{l} xid: Radio \rightarrow IR\\ xid(r) = \underset{i \in IR \ objects}{argmax} \ f(i; r) \end{array}$

 Assign hosts positive labels

Matthew Alger

Radio luminosity functions with Radio Galaxy Zoo and machine learning

- Assign hosts positive labels
- Assign everything else negative labels

Radio luminosity functions with Radio Galaxy Zoo and machine learning

- Assign hosts positive labels
- Assign everything else negative labels
- Train classifier to identify host and not host classes

- Assign hosts positive labels
- Assign everything else negative labels
- Train classifier to identify *host* and *not host* classes

 $\begin{array}{l} \text{xid}: \text{Radio} \rightarrow \text{IR} \\ \text{xid}(r) = \underset{i \in \text{IR objects}}{\operatorname{argmax}} g(i) \ \mathcal{N}(r, i) \end{array}$

Binary classification model

- ResNet-18 (multiclass)
 - Good accuracy
 - Low complexity
 - Very fast to train and use
- Remove last layer and replace with a binary classifier
- Add non-image features
 - Mid-infrared colours
 - 3.4 µm flux
 - Room for improvement e.g. add redshifts
- Accurate for ~96% of sources

Trade-offs between network complexity and accuracy on ImageNet. Image: Canziani et al. (2016)

lational

Binary classification model

Matthew Alger

Radio luminosity functions with Radio Galaxy Zoo and machine learning

10

۱ 🌐

Australian National University

Luminosity function of extended sources

- RGZ-Ex contains 214 214 cross-identified radio components with 26 268 redshifts
 - >4x more components than RGZ
 - >2x more components with redshifts than RGZ
- Large sample allows us to build a radio luminosity function of extended sources
 - \circ Luminosities 10²¹–10²⁷ W/Hz

Fractional luminosity function (Mid-IR)

- Divide radio luminosity function based on mid-infrared host colours
 - "Extended" star-forming sources below 10²³ W/Hz
 - Radio-loud sources

dominated by "intermediate" galaxies

Fractional luminosity function (Mid-IR)

Radio luminosity functions with Radio Galaxy Zoo and machine learning

Australiar National

University

Source finding with cross-identification

- We matched 214 214 radio components to 157 007 host galaxies
- If two components have the same host they are part of the same source
 - Many false positives
- RGZ-Ex candidate source catalogue
 - 157 007 candidate extended sources
 - All data required to reproduce our results
 - At least 10 new giants

Two giant radio galaxies identified in our catalogue, each 1.1 Mpc across. Images: FIRST

Looking forward: EMU

- Very different results to previous work on EMU-ATLAS
 - Much lower source density on sky
 - Higher angular resolution more extended sources
 - More training and prediction data
 - Alger+18, <u>doi:10.1093/mnras/sty1308</u>
- Generalisation to EMU will be non-trivial
- Radio Galaxy Zoo for EMU?

ATLAS observations of CDFS. Image: ATLAS DR3, Franzen+2015

